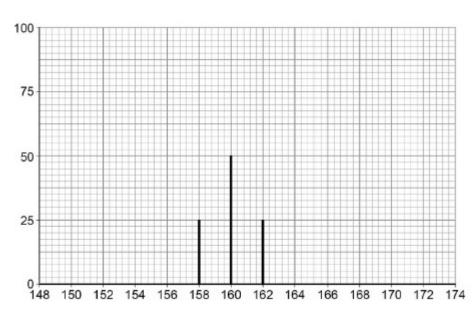
Mark schemes

Q1.

(a) $1s^22s^22p^63s^23p^63d^{10}4s^24p^5$ $1s^22s^22p^63s^23p^64s^23d^{10}4p^5$

1

(b) $Br_2(g) \to Br_2^+(g) + e^-$


OR

 $Br_2(g) + e^- \rightarrow Br_2^+(g) + 2e^-$

Do not penalise the inclusion of a radical dot

1

(c)

M1: both axes labelled

y-axis = (relative) abundance or %

x-axis = m/z

M2: two additional peaks at m/z = 160 and 162

M3: peaks at 158,160 and 162 in the relative heights 1:2:1

3

(d) The (relative) abundance is proportional to the size of the current.

[6]

Q2.

B/Boron (a)

Any 2 from:

Protons in the centre of the atom/nucleus

Electrons are in shells/energy levels (around the nucleus)

Neutrons in the centre of the atom/nucleus

Most of the atom is empty space/most of mass in nucleus

Definition (b)

Average / mean mass of 1 atom (of an element) (1)

1/12 mass of one atom of 12C (1)

Or

Average / mean mass of atoms of an element

1/12 mass of one atom of 12C

Or

Average / mean mass of atoms of an element × 12

mass of one atom of 12C

Or

(Average) mass of one mole of atoms 1/12 mass of one mole of ¹²C

Or

(Weighted) average mass of all the isotopes

1/12 mass of one atom of 12C

Or

Average mass of an atom/isotope

compared to/relative to C-12 on a scale in which an atom of C-12 has a mass of 12

Justification

Tellurium has Z = 52 but iodine has Z = 53

Te has **one** fewer proton than I / I has **one** more proton

Tellurium has 6 outer shell electrons/valence electrons but iodine has 7

Te has similar chemistry/chemical properties to other Group 6 elements

I has similar chemistry/chemical properties to other Group 7 elements

3

1

(c)
$$Te(g) + e^{-} \rightarrow Te^{+}(g) + 2 e^{-}$$

Or

$$Te(g) \rightarrow Te^{+}(g) + e^{-}$$

(d) M1 $v = \frac{d}{t} = 4.17 \times 10^{6} \text{ (m s}^{-1}\text{)}$

M2 m =
$$\frac{2\text{KE} \times \text{t}^2}{\text{d}^2}$$
 or m = $\frac{2\text{KE}}{\text{v}^2}$ or $\frac{2 \times 1.88 \times 10^{-12}}{(4.17 \times 10^6)^2}$

M3 m = 2.16×10^{-25} to 2.17×10^{-25} (kg)

M4 mass of 1 mole of ions = $L \times 1000 \times M3 = 130.4$ (g) *M4 Allow 130 to 131 (3 or more significant figures)*

M5 y = 130 or 131 *M5 Must be an integer*

(e) The KE of ¹²⁶Te⁺ is the same as the KE of ¹²⁴Te⁺

[13]

5

Q3.

(a) $1s^22s^22p^63s^23p^6$

1

(b) $Na^+(g) \rightarrow Na^{2+}(g) + e^-$

Ignore state symbol on electron, even if wrong.

Allow

$$Na^{+}(g) + e^{-} \rightarrow Na^{2+}(g) + 2e^{-}$$

 $Na^{+}(g) - e^{-} \rightarrow Na^{2+}(g)$

1

- (c) M1 sulfur / S
 - **M2** large jump after the sixth electron is removed due to the 7th electron being removed / large difference between ionisation energy 6 and 7
 - M3 electron removed from the (2p) orbital / (second) energy level / (second) shell which is closer to the nucleus / lower in energy / has less shielding

Both ideas needed for mark

3

[5]

Q4.

(a) **M1**

$$v = \frac{d}{t} = \frac{0.750}{2.48 \times 10^{-5}} = 30241.9 \text{ m s}^{-1}$$

M1 Calculation of v

M2

$$m = \frac{2 \, ke}{v^2} = \frac{2 \times 1.36 \times 10^{-16}}{(\text{ans to M1})^2}$$

M2 Calculation of m (in kg)

$$m = \frac{2 \, ke}{v^2} = \frac{2 \times 1.36 \times 10^{-16}}{(30241.9)^2} = 2.974 \times 10^{-25} \, kg$$

M3

 $m = (ans to M2) \times 1000$

M3 calculation of m (in g)

$$m = 2.974 \times 10^{-25} \times 1000 = 2.974 \times 10^{-22} g$$

M4

mass = (ans to M3) \times 6.022 \times 10²³

M4 calculation of mass of one mole of ions

$$mass = 2.974 \times 10^{-22} \times 6.022 \times 10^{23} = 179(.1)$$

M5

Mass of one mole = (ans to M4) - 1 = 178(.1)

M5 subtracts 1 for mass of H^+ Mass of one mole = 179.1 - 1 = 178(.1)

5

- (b) (High energy) electrons (from an electron gun) are used to knock out an electron (from each molecule or atom.)
- (c) Ion that reaches detector last: CO²⁺

Justification: Has the highest mass (to charge ratio) (so will travel the slowest)

2

1

- (d) **M1** (ions hit a detector and) each ion gains an electron (generating a current)
 - **M2** (the abundance is) proportional to (the size of) the current

 Allow the use of electron multiplier to amplify the current

- 4

2

[10]

2

3

[12]

Q5.

(a)
$$Sr(g) + e^- \rightarrow Sr + (g) + 2 e^-$$

Allow $Sr(g) \rightarrow Sr + (g) + e^-$

(b) M1 V = (d÷t =) $0.950 \div 9.47 \times 10^{-4}$ OR 1003 m s⁻¹ Recall and conversion of d into metres

M2 m =
$$\frac{2KE}{v^2}$$
 or $\frac{2 \times 7.02 \times 10^{-20}}{1003^2}$ (= 1.396 x 10⁻²⁵ kg)
 $\frac{2 \times 7.02 \times 10^{-20}}{M1^2}$ or $\frac{2KE}{d^2}$

M3 mass of ion =
$$1.396 \times 10^{-22}$$
 (g)
 $M3 = M2 \times 1000$

M4 mass of one mol of ions in g =

$$1.396 \times 10^{-22} \times 6.022 \times 10^{23}$$
 (= 84.04)
 $M4 = M3 \times Avogadro's number$
Conversion to g may be seen in M4

M5 mass number = 84

Answer as whole number

(c) **M1** (lons hit a detector/electron multiplier and) each ion gains an electron (generating a current)

M2 <u>current</u> is proportional to abundance

(d) **M1** Abundance
87
Sr = 2 × 18 ÷ 3 = $\frac{12(\%)}{}$

$$(82 \times 88) + (12 \times 87) + (6 \times 86)$$

M2
$$A_r = 100$$

$$M3 = 87.8$$

Answer to 1 decimal place

(e) the protein (ion) does not break up/fragment

[5]

```
Q6.
```

```
Mass of one ion of ^{121}Sb^+ = 121 / (1000 \times 6.022 \times 10^{23})
= 2.009 \times 10^{-25} \text{ kg}
                                                                                                                                 1
V = d/t
         = 1.050 / 5.93 \times 10^{-4}
         = 1770.658 (m s^{-1})
                            Alternative method
                            KE = \frac{1}{2} m d^2/t^2
KE = \frac{1}{2} \text{ m } \text{ v}^2
         = \frac{1}{2} \times 2.009 \times 10^{-25} \times (M2)^2 \text{ (or } = \frac{1}{2} \times M1 \times (M2)^2)
         = 3.1493 \times 10^{-19} (J)
                            m_{121}/t_{121}^2 = m_{123}/t_{123}^2
V_{123} = \sqrt{\left(\frac{2KE}{m}\right)}
         =\sqrt{[2(M3)/2.0425\times10^{-25}]}
         =\sqrt{3083769.889}
         = 1756.07 (m s^{-1})
                            T_{123}^2 = 123/121 \times t_{121}^2
                            = 3.57 \times 10^{-7} (s^2)
                                                                                                                                 1
t = d / v
         = 1.050 / (M4)
         = 5.98 \times 10^{-4} \text{ s}
                            t_{123} = \sqrt{M4}
```

1

1

1

1

Q7.

(a) <u>average/mean mass of 1 atom (of an element)</u>

1/12 mass of one atom of ¹²C

01

average/mean mass of atoms of an element

1/12 mass of one atom of 12C

or

average/mean mass of atoms of an element × 12

mass of one atom of 12C

or

(average) mass of one mole of atoms

1/12 mass of one mole of ¹²C

or

(weighted) average mass of all the isotopes

1/12 mass of one atom of ¹²C

or

average mass of an atom/isotope (compared to C-12) on a scale in which an atom of C-12 has a mass of 12

M1 = top line

M2 = bottom line

if moles and atoms/isotopes mixed max = 1

(185 x 10) + (X x 17)

(b) **M1** 186.3 = 27

correct expression

M2 (relative isotopic mass) = $\underline{187}(.1)$

(c) same electron configuration

allow same number of electrons
allow same electron structure
ignore same number of protons
ignore different number of neutrons
do **not** accept same number of neutrons

(d) M1 mass ¹⁸⁵Re
$$\left(=\frac{185}{6.02 \times 10^{23} \times 1000}\right) = 3.072 \times 10^{-25}$$
 calculate mass in kg

M2
$$v = \frac{d}{t}$$

recall of $v = d/t$

M3
$$v^2 = \frac{2KE}{m}$$
 or $7.5(0) \times 10^{11}$
rearrangement to get v^2

M4
$$v = \sqrt{\frac{2KE}{m}}$$
 or 8.66×10^5
allow $\sqrt{\frac{2 \times 1.153 \times 10^{-13}}{M1}}$

M5
$$t = \frac{1.45}{8.66 \times 10^5} = 1.67 \times 10^{-6} \text{ (s)}$$

 $M5 t = \frac{1.45}{M4}$
allow 1.67 × 10⁻⁶ to 1.68 × 10⁻⁶ (s)

alternative method:

M1 mass ¹⁸⁵Re
$$\left(=\frac{185}{6.02 \times 10^{23} \times 1000}\right) = 3.072 \times 10^{-25}$$
calculate mass in kg

M2
$$v = \frac{d}{t}$$
 or $KE = \frac{md^2}{2t^2}$
recall of $v = d/t$

M3
$$t^2 = \frac{md^2}{2KE}$$
rearrangement to get t^2

M4
$$t = d\sqrt{\frac{m}{2KE}}$$
 or $\sqrt{\frac{md^2}{2KE}}$ or $\sqrt{\frac{3.072 \times 10^{-25}}{2 \times 1.153 \times 10^{-13}}}$

allow
$$\sqrt{\frac{M1}{2 \times 1.153 \times 10^{-13}}}$$

M5 $t = 1.67 \times 10^{-6} \text{ (s)}$ allow $1.67 \times 10^{-6} \text{ to } 1.68 \times 10^{-6} \text{ (s)}$

1

(e) at the detector/(negative) plate the <u>ions/Re+ gain</u> an electron

1

(relative) abundance depends on the size of the current

1

alternative answer

M1 ion knocks out an electron into electron multiplier

M2 signal from electron multiplier proportional to number of ions

[12]